数据科学与大数据技术和通信工程哪个好?
一、数据科学与大数据技术和通信工程哪个好?
数据科学与大数据技术比较好。
就业前景比较乐观,毕业生能在政府机构企业公司等从事大数据管理研究应用开发等方面的工作。同时可以考取软件工程计算机科学与技术应用统计学等专业的研究生或出国深造。
二、数据科学与大数据技术和大数据管理与应用有什么区别?
数据科学、大数据技术和大数据管理与应用是三个相关但不同的概念。
数据科学是一门跨学科的学科,涉及统计学、计算机科学、数学、领域知识等多个领域,旨在通过数据分析和建模来发现数据中的模式和趋势,从而提供有关现实世界的见解和决策支持。
大数据技术是指处理和分析大规模数据的技术和工具,包括分布式计算、云计算、机器学习、自然语言处理等技术,旨在解决大规模数据处理和分析的问题。
大数据管理与应用则是指在大数据技术的基础上,对大规模数据进行管理、存储、处理和分析,并将其应用于实际业务场景中,以实现商业价值和社会价值。
因此,可以看出,数据科学是一门学科,旨在发现数据中的模式和趋势;大数据技术是一组技术和工具,旨在解决大规模数据处理和分析的问题;而大数据管理与应用则是将大数据技术应用于实际业务场景中,以实现商业价值和社会价值。
三、计算机网络技术与大数据哪个好?
大数据好。
大数据是符合现在趋势的新兴技术学科,全称是数据科学与大数据技术,属于交叉学科,有的学校把它归类在计算机专业里面,有的学校则把它放在数学专业里面。
大数据专业学习的内容涉及到计算机、数学、统计学等多个学科的知识综合运用,包括但不限于JavaSE核心技术、Python爬虫、云平台的开发技术等等。
四、数据科学与大数据技术和计算机科学与技术有什么区别?
课程不同,区别如下:
一、大学科基础课程的不同课程:
1、计算机科学与技术:程序设计(C语言)、操作系统、计算机网络、离散数学、人工智能导论、数据结构、数据库原理及应用技术、数字逻辑电路
2、数据科学与大数据技术:空间解析几何、程序设计与科学计算、机器学习基础、数据结构与数值分析、数据可视化
二、专业必修课不同课程:
1、计算机科学与技术:计算机组成原理、汇编语言、算法分析与设计、编译原理、数据挖掘、软件工程、机器学习基础
2、数据科学与大数据技术:知识发现与数据挖掘、随机过程、回归分析、时间序列分析、多元统计分析、计算统计
三、专业方向课不同课程:
1、计算机科学与技术:自然语言处理、大数据可视化、大数据技术、密码学、区块链技术、数字图像处理、信息论、云计算
2、数据科学与大数据技术:贝叶斯统计、抽样调查与应用、经济博弈论、强化学习、数据库原理与应用、数据智能前沿、数学建模与数学实验
五、数字化和大数据的区别?
这是说的一个事物的两个方面。
数字化,是指的将原有传统技术和事物转化为可以数字化的存在。比如,将图书馆藏书进行扫描,存入数字图书馆。把现场加工的机械零件做3d扫描,存入数据库,以后就可以做立体打印。
大数据,是将已经数字化的信息,通过比较,关联,分析等再处理得到进一步的信息。比如通过交通系统车牌识别系统,分析得到该用户经常往返于两点一线,就能推断出可能是家和公司的地址。
六、数据科学与大数据与统计学的区别?
1、区别一:培养目标不同。
(1)统计学
「统计学」主要通过利用大量数据进行量化分析,总结出一些经验规律,做出后期推断和预测,从而为相关决策提供依据和参考,其不仅仅是统计数字,还包含了调查、收集、分析、预测等,应用范围十分广泛。
(2)数据科学与大数据技术
「数据科学」综合运用统计学、计算机科学、应用数学等学科提供的现代数据分析工具和方法从数据中自动寻找规律或者有价值的信息。
具体来说,它是运用概率统计、并行与分布式计算、人工智能、机器学习等综合知识研究来自工业、生物医疗、金融证券和社交网络等众多领域的较大规模或结构复杂数据集的高效采集、高效存储、高效管理、精确建模、深入分析和精准预测的新兴交叉学科。
2、区别二:课程设置
(1)统计学
一般来说,统计学专业的核心课程无外乎三个方面——数学、计算机和经济。若对该专业的核心课程进行分类,可大致归结为以下3种∶
数学相关的核心课程:数学分析、几何学、常微分方程、概率论、抽象代数、复变函数等;计算机相关的核心课程:计算机应用基础、程序设计语言、数据库管理系统、计算机网络、数据结构与算法、深度学习等;
经济相关的核心课程∶计量经济学、经济预测与决策、金融数学、证券投资与统计分析等。
(2)数据科学与大数据技术
二若对数据科学与大数据技术专业的核心课程进行分类,可大致归结为以下3种∶
·数学相关的核心课程∶概率论、数理统计,应用多元统计分析,实变函数9,应用回归分析,贝叶斯理论与算法,统计计算等;
计算机相关的核心课程:程序设计实习,数据结构与算法,分布与并行计算,算法设计与分析,数据库概论等;
数学&计算机结合的核心课程:应用时间序列分析,自然语言处理导论,人工智能,深度学习等。
3、区别三:就业方向
(1)统计学
根据统计学就业方向侧重点的不同,大致可以分为三大类∶金融类、算法类、数据分析类。
1.金融类
相关职位∶量化投资、风险控制、股票分析师、市场研究员等
量化投资∶负责设计、编写和测试量化模型,搭建和优化数据系统和策略回测平台,对量化策略进行逻辑论证、回测评价、风险分析及产品化建议;负责量化FOF产品组合的研究、尽调、业绩分析、筛选、监控等。
风险控制:根据社区零售业务制定风控部署全年规划,对行业风险动态进行监控和快速调整风控策略;深刻理解社区零售业务链条,对社区零售业务链条的风险做风险评估和风险判断;结合风控核心指标与业务核心指标,定量分析 处理问题,沉淀通用解决方案(包含营销安全、价格风险),对风控策略和管控流程进行优化等。
·股票分析师∶负责行业信息和资料的收集、汇总、分析和研究,日常研究报告的撰写;通过公司平台服务客户,为客户提供行情、投资策略咨询服务;对行业和公司基本面的有深度的研究,能够挖掘有价值的投资机会,并形成投资分析报告等。
市场研究员∶ 负责产品营销策略评估、推广效果评估的用研工作。洞察用户转化的关键, 为单品营销优化提供输入;针对竞品开展增长案例专项研究,识别增长的新机会与手段,并推动在业务侧落地等。
2.算法类
相关职位∶数据挖掘工程师、机器学习算法工程师等
数据挖掘工程师∶负责用户增长、个性化运营、推荐系统相关的数据挖掘工作,包括但不限于人群挖掘、画像建设、用户模型等;梳理、提炼、整合能解决业务问题的可复用数据挖掘方案,沉淀形成数据中台的挖掘工具,持续提高挖掘效率。
机器学习算法工程师:负责构建用户画像,分析用户兴趣偏好负责核心业务的数据/算法工作,优化协调过滤算法,挖掘用户社交关系与潜在社群;负责相关业务的数据分析及增长挖掘工作等。
3.数据分析类
相关职位∶数据分析师、运营分析师、商业分析师等。
数据分析师∶面向特定行业的业务问题/业务目标,建立数据基本指标统计体系描述业务,通过数据分析为上级领导提供决策依据,实现数据的商业意义。
运营分析师∶负责用户洞察,建立统一的用户分层和生命周期模型,通过数据挖掘多维用户特征标签,发现商业机遇并推动职能团队落地运营策略;负责市场竞争分析,具有较强的市场分析和洞察能力,基于外部渠道样本数据采集,建立竞对分析模式,提供市场控比趋势和业务策略建议等。
商业分析师∶深入理解业务逻辑前提下,迭代业务核心指标体系,并推动线上化、产品化;结合内外部信息,输出有深度洞察力的专题分析,持续迭代业务决策层的业务认知,为策略制定奠定坚实基础。
七、信息技术和大数据的区别?
大数据主要指通过大数据技术对公司的以及目标行业数据进行处理、挖掘、分类等,最终形成适于应用的信息,是一个纯技术部门,但是信息技术部门每个公司的组织架构的定义不一样,有的是公司的IT服务部,办公软硬件的支持,还有一些团统企业,定位为与计算机相关的所有岗位,比如说软件项目相关,数据分析相关等。
八、大数据技术与应用与数据管理区别?
第一个区别就是专业分类不同。大数据管理与应用是管理学门类下的专业,属于管理科学与工程类,毕业授予的是管理学学士学位。数据科学与大数据技术是工学门类下的专业,属于计算机类,毕业授予的是工学学士学位。
第二个区别是开设课程不同。“数据科学与大数据技术”主要学习计算机课程和大数据算法、大数据分析与处理等相关课程。“大数据管理与应用”专业主要学习商业数据分析、数据智能与决策分析、大数据治理与商业模式等应用类型的课程。当然,这两个专业所学课程是有很多交叉的,比如计算机信息技术、大数据分析等课程都是要学的,只是有所侧重而已。
第三个区别是学习难度不同。“数据科学与大数据技术”属于理学和工学交叉学科,对数学基础要求比较高,学习难度较大。“大数据分析与处理”专业属于工学和管理学交叉学科,要求逻辑思维能力较强,学习难度比数据科学与大数据技术稍微低一点。
如果用一句话总结这两个专业的区别,就是“数据科学与大数据技术”专业是研究如何收集和分析大数据的,而“大数据管理与应用”专业是研究如何利用大数据分析结果指导商业运营和组织管理的。也就是说,一个是大数据的前端开发,一个是大数据的后端应用。
九、五分钟看懂大数据技术?
大数据技术涉及:数据的采集、预处理、和分布式存储、以及数据仓库、机器学习、并行计算和可视化等方面。
对于大数据技术,应用广泛的是以hadoop和spark为核心的生态系统。hadoop提供一个稳定的共享存储和分析系统,存储由hdfs实现,分析由mapreduce实现,
1、hdfs:Hadoop分布式文件系统,运行与大型商用机集群
hdfs是gfs的开源实现,提供了在廉价服务器集群中进行大规模分布式文件存储的能力。
2、hbase:分布式的列存储数据库。hbase将hdfs作为底层存储,同时支持mapreduce的批量计算和点查询(随机读取)
hbase是一个建立在hdfs之上,面向列的nosql数据库。它可用于快速读写大量数据,是一个高可靠、高并发读写、高性能、面向列、可伸缩和易构建的分布式存储系统。hbase具有海量数据存储、快速随机访问和大量写操作等特点。
在kudu出现之前,hadoop生态环境的存储主要依赖hdfs和hbase。在追求高吞吐、批处理的场景中,使用hdfs,在追求低延时且随机读取的场景中,使用hbase,而kudu正好能兼容这两者。
3、批处理计算的基石:mapreduce
批处理计算主要解决大规模数据的批量处理问题,是日常数据分析中常见的一类数据处理需求。业界常用的大数据批处理框架有mapreduce\spark\tez\pig等。其中mapdeduce是比较有影响力和代表性的大数据批处理计算框架。它可以并发执行大规模数据处理任务,即用于大规模数据集(大于1tb)的并行计算。mapreduce的核心思想:将一个大数据集拆分成多个小数据集,然后在多台机器上并行处理。
4、hive:分布式数据仓库,管理hdfs中存储的数据,并提供基于sql的查询语言用于查询数据